

EXERCICES D'APPLICATION

Objectifs:

- reconnaître une suite arithmétique et une suite géométrique
- déterminer le premier terme et la raison
- calculer le terme de rang n

Niveau	1	2	
Exercices à faire	1 - 2 - 3 - 4 - 5 -8 - 9 -10	1 - 2 - 3 - 5 - 6 - 7 -8 - 9	

 $oldsymbol{0}$ Parmi les suites suivantes, précisez si les suites de nombres sont arithmétiques ou géométriques. Vous donnerez le premier terme U_1 et vous calculerez la raison de la suite.

a- 2;1;0,5;0,25 b- 2;5;8;11;14

c- 3;6;9;12;15 d- 4;24;144;864

e- 15,4; 12,8; 10,2; 7,6; 5

- 2 Soit U la suite arithmétique de premier terme U_1 = 4 et de raison r = 7.
 - a. Calculer U2, U3 et U4
 - b. Calculer U₂₅

3 Soit U la suite arithmétique de premier terme U_1 = 2 et de raison r = -2.

- a. Calculer U2, U3 et U4
- b. Calculer U₁₂

 $oldsymbol{4}$ Soit U la suite géométrique de premier terme U_1 = 3 et de raison q = 2.

- a. Calculer U2, U3 et U4
- b. Calculer U₂₅

5 Soit U la suite géométrique de premier terme $U_1 = \frac{4}{3}$ et de raison q = 3.

- a. Calculer U2, U3 et U4
- b. Calculer U₃₀

6 a. Soit une suite arithmétique, calculer sa raison r si U_1 = 0 et U_{11} = 100.

b. Soit une suite arithmétique, calculer sa raison r si U_1 = 12 et U_9 = 108.

 \odot a. Soit une suite géométrique de raison q = 2 et telle que U_7 = 32. Calculer son premier terme.

b. .Soit une suite géométrique de raison $q = \frac{1}{2}$ et telle que $U_5 = 0,625$. Calculer son premier terme

8 Le tableau de production de deux chaînes de montage d'une usine est le suivant :

mois	Production mensuelle Chaîne A (en unités)	Production mensuelle Chaîne B (en unités)	
Janvier 2003	2 100	1 500	
Février	2 200	1 640	
Mars	2 300	1 780	
Avril	2 400	1 920	
Mai	2 500	2 060	
etc			

Chaque production forme une suite arithmétique.

- 1. Quelle est la raison de la chaîne A? Quelle est la raison de la chaîne B?
- 2. Calculer la 20e production de la chaîne A et de la chaîne B.
- 3. Au bout de combien de mois les production des deux chaînes seront-elles égales ? *(uniquement niveau 2)*
- a. La population d'un village de montagne diminue tous les ans de 20%. Sachant qu'en 2002 elle était de 1 875 habitants, compléter le tableau suivant :

Année	2002	2003	2004	2005	2006
Nombre d'habitants					

- b. Montrer que les nombres d'habitants sont les termes d'une suite dont on déterminera la nature et la raison.
 - c. Donner l'expression générale de cette suite
 - d. Déterminer, en utilisant la formule, la population de ce village en 2015.
- M. Godzal vous a proposé de choisir entre deux types de rémunérations à partir du 1^{er} juin 2002 :

rémunération 1, année 2002 : salaire brut mensuel de 720 € ; années suivantes : augmentation de 32 € au 1^{er} janvier de chaque année.

<u>rémunération 2</u>; années 2002 : salaire brut mensuel de 600 $\mathbf{\epsilon}$; années suivantes : augmentation de 5 % au 1^{er} janvier de chaque année.

Pour chaque type de rémunération :

- 1) calculez le salaire brut mensuel en 2003 et en 2004
- 2) déduisez la formule donnant le montant du salaire brut mensuel de l'année n, l'année 2002 étant considérée être la première année ;
 - 3) calculez à l'aide de cette formule le salaire brut mensuel en l'année 2010
- 4) déterminez le nombre d'années nécessaires pour que le salaire double. Arrondir au nombre entier le plus proche.

EXERCICES COMPLEMENTAIRES

Objectifs:

- reconnaître une suite arithmétique et une suite géométrique
- déterminer le premier terme et la raison
- calculer le terme de rang n

• Les dimensions, exprimées en cm, des formats normalisés utilisés en imprimerie : A_1 , A_2 , A_3 ,.... sont partiellement reportées dans le tableau ci-dessous :

Formats	A ₁	A ₂	A ₃	A ₄
Longueurs L en cm	84,1			29,7
Largeurs I en cm	59,5			21

- 1. Sachant que les longueurs L_1 , L_2 ,, forment une suite géométrique de raison $\frac{\sqrt{2}}{2}$, calculer L_2 ; L_3 (résultats arrondis à 0,1).
- 2. Sachant que les largeurs l_1 , l_2 ,, forment une suite géométrique de raison $\frac{\sqrt{2}}{2}$, calculer l_2 ; l_3 (résultats arrondis à 0,1).
- 3. Calculer L_{11} et I_{11} , dimensions d'un timbre-poste de format A_{11} .
- 2 Une entreprise de travaux publics réalise une portion de route. Elle décide de compacter une première couche de sable-ciment de 45 cm d'épaisseur (u_1) . Elle utilise un compacteur à pneu qui, à chaque aller-retour, réduit de 8% l'épaisseur de la couche de sable-ciment restante.
- 1- Calculer l'épaisseur (arrondie au cm) de la couche restante après le premier (u_2) , puis le deuxième aller-retour (u_3) .
 - 2- On assimile u_1 , u_2 , u_3 à une suite numérique.
 - a- déterminer la nature et la raison de cette suite
 - b- compléter le tableau ci-dessous :

u_1	U ₂	u ₃	U ₄	u ₅	u ₆

- 3- Indiquer combien il faut effectuer de passages pour obtenir une couche restante de hauteur inférieure à 30 cm.
- 2 La production mensuelle d'une entreprise d'électroménager constitue une suite arithmétique. Le premier mois, la production était de 12 500 appareils (soit u_1 = 12 500). Le sixième mois, elle atteignait 15 800 appareils (soit u_6 = 15 800).
 - a- déterminer la raison de la suite
 - b- déterminer la production totale annuelle de l'entreprise.

EXERCICES D'APPLICATION

- Une usine assure, en 2000, une production de 100 000 articles. Elle s'engage à augmenter sa production de 3% tous les ans.
- 1. On considère que P_1 est la production en 2 000. Calculer la production P_2 en 2001 et la production P_3 en 2002.
 - 2. Quelle est la nature de cette suite ? Donner le premier terme et la raison.
 - 3. Exprimer la production P_n de la n^{ième} année en fonction de P₁
 - 4. Calculer la production en 2008.
- 2 La production de l'usine de M. Leclerc a été de 6 000 unités la première année. La production augmente de 120 unités par an.

On note:

- U₁ la production la 1^{ère} année
- U₂ la production la 2^{ème} année
- U₃ la production la 3^{ème} année
- Un la valeur de la machine au bout de n années
 - 1) Calculer U₂, U₃
 - 2) Quelle est la nature la suite (U_n) ? Donner la raison de cette suite.
 - 3) Exprimer U_n en fonction de n
 - 4) Calculer la production la $10^{\text{ème}}$ année.
- 3 Le directeur de production d'un entreprise aéronautique suit la production de ces ateliers. Il a remarqué que:
- <u>Pour l'atelier A</u>: en 1996, première année de fonctionnement, la production a été de 8 000 unités. La production augmente de 450 unités par an.
- <u>Pour l'atelier B</u>: en 1996, première année de fonctionnement, la production a été de 7 000 unités. La production augmente de 8 % par an.

Pour chaque type d'ateliers :

- 1) calculez la production en 1997 et en 1998
- 2) déduisez la formule donnant la production de l'année n, l'année 1996 étant considérée être la première année ;
- 3) calculez à l'aide de cette formule la production pour l'année 2003. Quel atelier a la production la plus élevée ?
- 4) Représenter sur le graphique ci-dessous les productions des ateliers A et B. Déterminer à partir de quelle année la production de l'atelier B est supérieure à la production de l'atelier A. Vérifier ce résultat par le calcul.